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CPMAS integrates cyber and physical layers across multiple intelligent agents to 

enable resilient, cooperative behaviour in dynamic, real-world environments

1.1 Cyber-physical Multiagent Systems (CPMAS)

Cyber-layer 

Interaction

Physical-layer

Collaboration

System Type Key Focus Strengths & Weaknesses

MAS Distributed coordination
 Decentralized, scalable

✘ Limited physical interaction

CPS Cyber-physical coupling

 Real-time control

✘ Centralized or partially 

distributed, less adaptive

CPMAS
Cyber-physical-agent 

collaboration

 Adaptive, robust in complex 

environments

Wider application
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UAV formations Heterogeneous satellite system

Autonomous cars in intersection Human-machine collaboration

1.2 Examples of CPMAS
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Save average energy Improve survivability

Complete complex tasks Extend functions

Source from: https://www.youtube.com/watch?v=i3ernrkZ91E

1.3 Advantages of CPMAS
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How does group 
intelligence emerge？

125 Questions from Science Covers from Science and Nature

Swarm learning, AI, etc.

1.4 Significance - Frontier Field 



8

China USA

Australia UK

1.4 Significance - Strategic Needs
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Source from: https://news.sina.cn/2017-12-05/detail-ifyphtze4406603.d.html

Intelligent transportation systems-self-drive 

AlphaBus

◼ Traffic signal control, reducing congestion and optimizing traffic flow

◼ Autonomous parking systems, optimizing decision-making

Autonomous parking system 

(University of Adelaide (UoA))

1.5 Applications - Intelligent Transportation
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Source from: https://news.sina.cn/2017-12-05/detail-ifyphtze4406603.d.html

Unmanned vehicle formations

for attack and defense
Israel-Iran conflict

1.5 Applications - Defense

◼ Autonomous attack and defense, enhancing combat efficiency while 

reducing human involvement in dangerous environments
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MineSwarm for efficient detection 

of land mines (UoA)
Ground-air switching vehicle tracking 

a target drone (UoA) 

1.5 Applications - Defense

◼ Autonomous attack and defense, enhancing combat efficiency while 

reducing human involvement in dangerous environments
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Show robot human-machine smart manufacturing

(UoA with Australian Meat Processor Corporation)

Source from: https://www.tesla.cn/; https://www.iimt.org.cn/h-nd-611.html

Tesla's automated vehicle production

1.5 Applications - Industrial Automation

◼ Collaborative manufacturing, handling, and inspection, enabling real-time 

optimization on complex production lines
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Australian bushfire monitoring (UoA) Multi-UAV agricultural monitoring and 

irrigation

Source from: https://www.youtube.com/watch?v=jcbJTiimO-w

1.5 Applications - Environmental Monitoring

◼ Collaborative environmental data collection, disaster assessment, improving 

real-time monitoring performance and area coverage
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Unmanned warehouse UAV-UGV consensus (UoA)

1.5 Applications - Smart logistics

◼ Collaborative logistics, optimizing goods distribution and logistics 

operations 

Source from: https://www.youtube.com/watch?v=oBlmGOwxHsE
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Multi-physical constraintsChall. 2

Existing cooperative methods fail under 

heterogeneity, non-cooperative obstacles, and faults 

         

Complex and unknown environmentChall. 3

Most methods are model-sensitive and have limited 

autonomy in complex dynamic environment   

        

Source from： https://www.guancha.cn/society/2018_05_02_455570.shtml; https://blog.csdn.net/FEISILAB_2022/article/details/130678377; https://bigsuperzzzx.github.io/

Unstable communication networksChall. 1

Traditional cooperation struggles with limited network 

resources and malicious attacks      

     
Cyber-attacksLimited networks→ Cyber-layer: insecure interaction

Faults

Collisions
Multi-faultsDynamic obstacles

→ Physical-layer: unsafe cooperation

→ Both layers: low autonomy
Dynamic env.Unknown model

1.6 Current Challenges
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Model-based cooperative control

• Safety-critical applications 

• Known or partially known model 

• Good theoretical guarantee

AI-empowered cooperative control

Neural 

network

Expert 

system

• Partially known/unknown environment

• Complex environment 

• Data-rich environment

From model-based to AI-empowered cooperative control

1.7 Solution
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IEEE TSMCS, 2024, 54(8): 4876–4886; IEEE TCYB, 2024, 54(10): 6244–6255; Automatica, 2020, 122, 109223

(1) Distributed resilient consensus under limited bandwidth and DoS attacks 

• Limited communication and local information hinder timely cooperation

• DoS attacks disrupt links and threaten consensus resilience

Technical 

Hurdles 

Adaptive and Event-based Scheme Distributed Resilient Control Experimental Results

Improved convergence speed 
almost twice under DoS attack

𝑡𝑖
𝑘+1 = ൞

𝑡𝑖
𝑘 + Δ∗, 𝑖𝑓 𝑘 ∈ ℱ𝒾 

𝑡 > 𝑡𝑖
𝑘| 𝜙𝑖  𝜃𝑖  𝑒𝜒𝑖

𝑇 𝑒𝜒𝑖
> 𝜓𝑖

𝑇𝜓𝑖  

Dual adaptive laws

• Fast convergence without DoS:

𝐴𝑖
η

𝑢𝑖
ν + 𝑑𝑖𝑗

ν 𝑏𝑖𝑗
η

< 𝑑𝑖𝑗
ν δν, 𝑗 ∈ 𝒩𝒾, β1 > 0

• Slow divergence with DoS:
η𝑖

𝑇 𝐴ν 𝑇𝑃 + 𝑃𝐴ν − β2𝑃 η𝑖 < δν, β2 > 0

Enable resilient interaction under cyber-layer constraints

2.1 Model-Based Control under Cyber-Layer Constraints 

Decouple parameter

Distributed convergence to each 
agents’ secure regions
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Distributed Control Framework

• DoS attacks case

• FDI attacks case

Ensure distributed detection and secure communication under hybrid attacks

( )

( )

( )
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 −
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= − −

2.1 Model-Based Control under Cyber-Layer Constraints 

(2) Distributed formation control for UAVs under DoS and FDI attacks 

• Distributed architectures communicate under malicious network attacks

• Attack detection and control switching for nonlinear system models

Technical 

Hurdles 

IEEE TITS under review Jul. 2025

Residual detector

Signal compensation 

controller for FDI attacks

Controller 

Switching
Historical data recall 

controller for DoS attacks

FDI DoS

UAVs systems Cameras Sensors
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• Verifications — applied to build information security for UGVs and UAVs

Collaborative target tracking and patrolling 

under communication constraints and DoS

Formation control of micro-UAVs under 

DoS and FDI attacks

Efficient Interaction    
Chall.1 Cyber-Layer: 

insecure interaction

Overcome

2.1 Model-Based Control under Cyber-Layer Constraints 
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IEEE TASE, 2022, 19(4): 2788–2800; IEEE TCYB, 2024, 54(10): 6244–6255

ECBF-based Formation control Safe heterogeneous control Experimental Results

Empower safe cooperation for heterogeneous CPMAS in obstacle-rich environments 

ECBF
Safety filter

Heterogenous 
MAS

Output 
regulation  

formation control 
or consensus 

Non-cooperative obstacles

Safety input

Output
Communication networks

Local data

( , , ) 0,  ij i j i ijh x x u j O  Safety region

Nominal 
input

Collision-free formation

Augmented system

Stabilizer

Internal 
model 

compensator 

Safety 
filter

Safe formation regulator

Error

Uncertain
heterogene

ous
dynamics

• Internal model compensator

ሶ𝑧𝑖 = Σ𝑖1𝑧𝑖 + Σ𝑖2 ෝ𝑒𝑖  ෝ𝑒𝑖 = 𝑦𝑖 − 𝐶𝑖
η

ෝη𝑖 − 𝐶𝑖
𝑓

𝑓𝑖

• Heterogenous nonlinear CPMAS

−𝐵𝑖𝑗 ℎ
𝑖𝑗

𝑟𝑖
𝑏

, 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑗𝐾ℎ𝑖

α 𝐻𝑖𝑗

ሶ𝑥𝑖 = ෩𝑓𝑖 𝑥𝑖 + ෥𝑔𝑖 𝑥𝑖  𝑢𝑖 ,

𝑦𝑖 = ෩ℎ𝑖 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛

Different order
& dynamics

Achieved faster convergence within 
distributed safety region

2.2 Model-Based Control under Physical-Layer Constraints 

(1) Safe heterogeneous formation control via exponential control barrier function (ECBF)

• Heterogeneous agents with different-order and nonlinear dynamics

• Non-cooperative dynamic obstacles causing unpredictable collisions

Technical 

Hurdles 
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IEEE TCNS, 2022, 9(2): 845-855; JFI, 2019, 356(12):6547-6570 

Fixed-Time Observer & Control Fault-Tolerant Control Strategy

• Observer 1: Estimate the matrix S 

Experimental Results

Enable fast and adaptive fault-tolerant control under multi-faults

• Improved 

resilience to 

all 3 faults

• Fixed-time 

convergence 

regardless of 

initial 

conditions

• Quicker 

observation 

speed,

Higher 

precision, 

More robust

ሶ𝑆𝑖
𝑙𝑘(𝑡) = −𝑐1sign(𝜂𝑖(𝑡)) − 𝑐2sig(𝜂𝑖(𝑡))2

• Observer 2: Estimate the state v(t) 

ሶ𝑣𝑖 𝑡 = 𝑆𝑖 𝑡 𝑣𝑖 𝑡 − 𝑐3𝐾𝜉𝑖 𝑡

 −𝑐4𝑠𝑖𝑔𝑛 𝐾𝜉𝑖 𝑡 − 𝑐5𝑠𝑖𝑔 𝐾𝜉𝑖 𝑡
2

• Adaptive Fault-Tolerant Controller

𝑢𝑖(𝑡) = −
መ𝑑2𝑖

2 (𝑡) ∥ 𝑣𝑖(𝑡) ∥2 𝐵𝑇𝑃2𝜑𝑖(𝑡)

መ𝑑2𝑖(𝑡) ∥ 𝜑𝑖
𝑇(𝑡)𝑃2𝐵 ∥∥ 𝑣𝑖(𝑡) ∥ +𝜖(𝑡)

− መ𝑑1𝑖(𝑡)𝐵𝑇𝑃2𝜑𝑖(𝑡) −
መǇ𝑓𝑖

2(𝑡)𝐵𝑇𝑃2𝜑𝑖(𝑡)

መǇ𝑓𝑖(𝑡) ∥ 𝜑𝑖
𝑇(𝑡)𝑃2𝐵 ∥ +𝜖(𝑡)Guarantee that the multiagent networks can achieve 

output regulation control despite the impact of faults Tolerant multi-faults

Efficiency 

Loss

Outage 

Fault
Bias Fault

Exosystem
Fixed-Time 

Observer 1

Fixed-Time 

Observer 2

Adaptive 

Fault-Tolerant 

Controller

Multi-agent 

system

2.2 Model-Based Control under Physical-Layer Constraints 

(2) Distributed fault-tolerant cooperative output regulation

• Traditional methods require agents to access full exosystem information – unrealistic

• Existing protocols cannot convergence within a desired time, especially under multi-faults
Technical 

Hurdles 
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• Verifications — applied to heterogeneous systems and omnidirectional rovers

UAV-UGV collaborative area scanning 

under non-cooperative obstacles

Reliable Cooperation    

Omnidirectional rover formation for area 

searching under faults

Overcome Chall.2 Physical-layer: 

Unsafe cooperation

2.3 Model-Based Control under Physical-Layer Constraints 
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25IEEE TCYB, 2023, 53(4): 2600-2609; IEEE TFS, 2022, 30(9): 3940-3951

(1) Fuzzy control for MAS under hybrid cyber-attacks

• Hybrid cyberattacks in both S-C and C-A channels are difficult to model 

• Hybrid cyberattacks complicate event-triggered control design

Technical 

Hurdles 

K
e

y
 I

d
e
a

Hybrid Attack Model and control scheme

• Controller design 

Ensure distributed autonomous control in insecure network environment

FDI

DoS

S-C channel

C-A channel ⚫ Accurate path tracking
⚫ Good control performance,
⚫ Improved network utilization

𝑦 𝑡 = ൝
𝑏𝑠 𝑡 𝐹𝑠 𝑡 + 1 − 𝑏𝑠 𝑡 𝑦 𝑡 , 𝑡 ∈ 𝐼1, 𝑛

 ∅,  𝑡 ∈ 𝐼2, 𝑛

𝑢 𝑡 = ൝
𝑏𝑐 𝑡 𝐹𝑐 𝑡 + 1 − 𝑏𝑐 𝑡 𝑢𝑐 𝑡 , 𝑡 ∈ 𝐼1, 𝑛

 ∅,  𝑡 ∈ 𝐼2, 𝑛

𝑢 𝑡 =

෍

𝑗=1

2

ħ𝑗 𝜂ℎ 𝑡ℎ
𝑠ℎ (𝑏𝑐 𝑡 𝐶𝑗

𝑐𝑓𝑐 𝑥𝑐(𝑡𝑔,𝑛
𝑐 ℎ )

+ 1 − 𝑏𝑐 𝑡 𝐶𝑗
𝑐𝑥𝑐 𝑡𝑔,𝑛

𝑐 ℎ , 𝑡 ∈ 𝐿1, 𝑛 ∩ 𝑄𝑘,𝑛
𝑐

∅,  𝑡 ∈ 𝐼2, 𝑛

3. AI-Empowered Cooperative Control

Experimental Results
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Constrained environment and unknown dynamics
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Agent

States

Modified 
nonlinear 
mapping

Error1
1 1

1

2 2 2

( ) ln
2

( )

ci ci i
i

ci i

i i

k k e
e

k e

e e

+
 =

−
 =

Neural 
Network

Fixed-
time

pm

qnx ax bx= − −

/ 1m n 

/ 1p q 

Distributed control framework

Distributed observer-based framework for 
physical constraints and unknown dynamics

Fixed-time NN Control

• Neural network approximation

• Fixed-time control

Fast high 
accuracy 

convergence

Enable distributed autonomous control in constrained environment

0 0

_

_
2maxmin

max min

( ( ) ( ) ( ( ) 1) )

3 || ||

1
( ( 3) || || )

2

i i i i i i

i

i

f x f x g x u d

r

mm
r

m m

− + − +

 + 

 + + 

3

^
* maxmin

2

max min

1/2

2 2 2 1 1 2 2

( ( 3) )sign( )
2 2

       ( (1 ) ( ) ( ))[ ]

i i i

q

mm
u r

m m

k l

 

     

= −  + + +

− + + + +

*

2

min

( ) sign( )i i i
i

u v
v

m

−
= Deadzone 

inverse

Unknown sign 

3. AI-Empowered Cooperative Control

(2) Fixed-time neural network control under physical constraints

• Simultaneous handling of multiple constraints complicates controller design

• Existing methods cannot guarantee fixed-time performance

Technical 

Hurdles 

Experimental Results
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IEEE TNNLS, 2021, 34(8): 4286-4295; Nonlinear Dynamics, 2022, 108(4): 3693-3709

Fractional Sensitivity Parameters

Balance estimation 
accuracy and 
system stability

Experimental Results

Higher precisionLess chattering

Neural-Based Observer

• Fictitious system ሶො𝑥𝑖  = 𝑔𝑖𝑢𝑖 − ෤𝑥𝑖 + ෡𝑊𝑖
T𝜑𝑖 𝑌𝑖

ሶ𝑥𝑖  = 𝑔𝑖𝑢𝑖 + 𝑤𝑖• Actual model

Achieve a faster & more stable tuning process

• Adaptive law ሶ෡𝑊𝑖 = 𝛾1𝜑 𝑌𝑖 ෤𝑥𝑖
T − 𝛾2 ෤𝑥𝑖

෡𝑊𝑖

Improve uncertainty estimation performance and accuracy

0 Error norm10110010−110−210−3

3. AI-Empowered Cooperative Control

(3) Uncertainty estimation based on neural networks

• Static parameters induce chattering

• Saturated systems cause delay and oscillation

Technical 

Hurdles 
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IEEE TNNLS, 2025, 36(2): 2777-2788;  IEEE TSMCS, 2024, 54(8):4876-4886

CPMAS under unknown environment and model information 

Rewards

Update 
constraints

Distributed deep reinforcement learning

Unknown environment and model

Communication networks

Input

OutputsLocal data

Cyber-Physical 
layer safe 

optimization
TD3

Distributed Deep RL Framework

Distributed policy learning for unknown 
model and environment variations

Safe Optimization Strategy

𝑢𝑖
⋆ = arg min

𝑢𝑖

|𝑢𝑖 − 𝑢𝑖
ref |2

s.t. − ሶ෠ℎ𝑖𝑗 ≤
𝑎𝑖

𝑎𝑖 + 𝑎𝑗
γℎℎ𝑖𝑗

3 , ∀𝑗 ∈ 𝒪𝒾 ∩ ℳ

− ሶ෠ℎ𝑖𝑘 ≤ γℎℎ𝑖𝑘
3 , ∀𝑘 ∈ 𝒪𝒾 ∖ ℳ

• Distributed control optimization

• Reward function for DDRL

𝑅 = − ෍
𝑗∈𝒪𝒾∩ℳ

ቚห ሶℎ𝑖𝑗 − ෢ℎ𝑖𝑗 −  ෢ℎ𝑗𝑖  
2

− ෍
𝑘∈𝒪𝒾∖ℳ

ቚቚ ሶℎ𝑖𝑘 − ෢ℎ𝑖𝑘

2
 −  𝑃𝑐

Local data

Env changes Safety penalty

Experimental Results

Improve 
safety &
learning 

rate

Empower distributed autonomous optimization in complex environment

3. AI-Empowered Cooperative Control

(4) Distributed safe reinforcement learning and control optimization

• Unknown environment and model limit traditional methods

• Distributed systems hinder safe coordination and optimization

Technical 

Hurdles 
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Enable adaptive human-robot collaboration with unified intention estimation and multi-task control

FLS-based Multitask Control Framework Experimental Results 

•   Outer-loop: Human Intention Estimation

• Inner-loop: Task-Space Mapping

• Inner-loop: Adaptive Fuzzy Control Law

• Inner-loop: FLS Weight Tuning

Fuzzy-Based Control Strategy

An outer loop estimates human intent with fuzzy logic, while an 

inner loop uses adaptive fuzzy control and null-space projection 

for prioritized multitask execution.

𝑥ℎ𝑑
𝑇 , ẋℎ𝑑

𝑇 , 𝑘ℎ
𝑇 , 𝑑ℎ

𝑇 𝑇
= 𝑊𝑑

𝑇ℎ𝑑 𝑢𝑑,𝑐𝑑,𝜎𝑑
+ 𝜖𝑑

𝐹𝑐𝑡𝑟𝑙 =  𝐾𝑣𝑟 +  Ŵ𝛹
𝑇 ℎ𝛹 + 𝐾𝑟𝑠𝑔𝑛 𝑟 + 𝐹𝑣

ẋᵢ =  𝐽ᵢ(𝑞)𝑞ሶ

ሶŵΨ𝑖 =  𝛽Ψ𝑖(ℎΨ 𝑟𝑖  −  𝛿Ψ𝑖 𝑟 ŵΨ𝑖)

Effective trajectory tracking

Prevail over the PID controller 

on multitask tracking

3. AI-Empowered Approaches

(5) Fuzzy-based control for human-machine collaboration

• Hierarchical fuzzy control integrates human intention estimation and multi-task coordination

• Unmeasurable intention, task interference, and uncertain robot dynamics

Technical 

Hurdles 
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• Verifications — applied to drone swarms and multi-robot systems

Done swarm passing through a bounded 

window

Autonomous optimization

Formation control in the networked multi-

robot system

Overcome Chall.3 Both layers: 

low autonomy

3. AI-Empowered Approaches
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(1) Brain-inspired human-cyber-physical collaborative intelligence

4 What’s next ?

Source from: https://spj.science.org/doi/10.34133/cbsystems.0128

Brain-inspired navigation Human-cyber-physical 

collaborative Combat



33

(2) Multimodal embodied perception and co-decision among agents

4 What’s next ?

Source from: https://www.qualcomm.com/news/onq/2023/09/embodied-ai-how-do-ai-powered-robots-perceive-the-world

Embodied AI
Large language models enabled 

space exploration 
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(3) Explainable and trustworthy autonomy architecture

4 What’s next ?

Source from: https://www.forbes.com/sites/williamhaseltine/2023/10/06/the-needles-edge-autonomous-robotic-surgery-and-its-implications-for-medicine/

Companion robots for emotional support Trust intelligent healthcare systems 
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4.4 Large-scale heterogenous CPMAS control and cross-field applications 

4 What’s next ?

Large-scale CPMAS in smart cities Cross-field application
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your listening!
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