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1.1 Cyber-physical Multiagent Systems (CPMAS) 4

CPMAS integrates cyber and physical layers across multiple intelligent agents to
enable resilient, cooperative behaviour in dynamic, real-world environments

Cyber-layer
Interaction

S

System Type Key Focus Strengths & Weaknesses

v/ Decentralized, scalable

MAS Distributed coordination X Limited physical interaction

v Real-time control
CPS Cyber-physical coupling | X Centralized or partially
distributed, less adaptive

v Adaptive, robust in complex
environments
v'Wider application

Cyber-physical-agent

CPMAS collaboration

Physical-layer
. THE UNIVERSITY
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1.2 Examples of CPMAS :
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Autonomous cars in intersection Human-machine collaboration




1.3 Advantages of CPMAS

Complete complex tasks

Source from: https://www.youtube.com/watch?v=i3ernrkZ91E

Extend functions
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1.4 Significance - Frontier Field ;

125 Questions from Science Covers from Science and Nature

125 QUESTIONS: EXPLORATION AND DISCOVERY ‘ .

125 QUESTIONS:
EXPLORATION AND DISCOVERY

Artificial Intelligence 2 Ay

Could we integrate with computers to form SWARM

a human-machine hybrid species? I_EARNING | X ' 7
We are on the cusp of human-machine hybrids, erenil ret APhetiork y d A ‘
especially given advancements in smart exoskeletons generates confidential ’ ' 7 L
. . disease classifiers for \
and prosthetics, implantable sensors and chips, Al, and precision medicine , \ 1 \ i
genomic Ediﬂnﬁ fﬂrhnnlngi% : s : ‘l ‘ [ 110 ‘ LA

@)es group intelligence em@

Group or collective mgmmgence occurs when
individuals come togethgr and collaborate. In his book
Social Media Security, Mfchael Cross discusses how
groups collectively solvg problems through interaction
and competition betwegn individuals within the
group. Through conserfsus, ideas that detract from the
solution are resolved ahd discarded. This phenomenon
is not limited to humarf-human interaction. Scientists at
—— S the MIT Center for Cojective Intelligence are exploring
"how people and corfputers can be connected so

T ',-..-.,_
3 \ 125 1 In honor of Shanghai Jiao Tong University’s 125th Anniversary

Sponsored by Prackiced by the Sclence/AAAS that—collectively-they act more intelligently than any
Custom Publishing Office "
Ry L xd g .6 person, group, or cofnputer has ever done before.” The
1|] -~ r‘?‘{\ 443 SCI(_‘]]C(_‘ RAYAAAS team'’s multidisciplinfry insights can offer a window

into how group intefligence emerges, using methods

v
How does group Swarm learning, Al, etc.

intelligence emerge?
of ADELAIDE




1.4 Significance - Strategic Needs .
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1.5 Applications - Intelligent Transportation :

B Traffic signal control, reducing congestion and optimizing traffic flow
B Autonomous parking systems, optimizing decision-making

Intelligent transportation systems-self-drive Autonomous parking system
AlphaBus (University of Adelaide (UoA)) A
THE UNIVERSITY
Source from: https://news.sina.cn/2017-12-05/detail-ifyphtze4406603.d.html oADELAIDE
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1.5 Applications - Defense "

B Autonomous attack and defense, enhancing combat efficiency while
reducing human involvement in dangerous environments

Unmanned vehicle formations
for attack and defense

_ _ : . s THE UNIVERSITY
Source from: https://news.sina.cn/2017-12-05/detail-ifyphtze4406603.d.html JADELAIDE




1.5 Applications - Defense ”

B Autonomous attack and defense, enhancing combat efficiency while
reducing human involvement in dangerous environments

MineSwarm

Hybrid unmanned
ground and air vehicle

Target drone

MineSwarm for efficient detection Ground-air switching vehicle tracking
of land mines (UoOA) a target drone (UoA)
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1.5 Applications - Industrial Automation "

B Collaborative manufacturing, handling, and inspection, enabling real-time
optimization on complex production lines

Show robot human-machine smart manufacturing

Tesla's automated vehicle production gz
(UoA with Australian Meat Processor Corporation) P

THE UNIVERSITY

o ADELAIDE
Source from: https://www.tesla.cn/; https://www.iimt.org.cn/h-nd-611.html




1.5 Applications - Environmental Monitoring 13

B Collaborative environmental data collection, disaster assessment, improving
real-time monitoring performance and area coverage

5

' =
é &= A
» =
Australian bushfire monitoring (UoA) Multi-UAV agricultural monitoring and

irrigation
THE UNIVERSITY
Source from: https://www.youtube.com/watch?v=jcbJTiimO-w /ADELAIDE




1.5 Applications - Smart logistics ’

B Collaborative logistics, optimizing goods distribution and logistics
operations

Unmanned warehouse UAV-UGYV consensus (UoA)

THE UNIVERSITY
Source from: https://www.youtube.com/watch?v=0BImGOwxHsE of ADELAIDE




1.6 Current Challenges B

Chall. 1 Unstable communication networks

Traditional cooperation struggles with limited network
resources and malicious attacks

-> Cyber-layer: insecure interaction

5 T e ~ At Vel as 3 v Ll
| Imited networks Cyber-attacks
. %

U1Vl Multi-physical constraints

Existing cooperative methods fail under
heterogeneity, non-cooperative obstacles, and faults

-> Physical-layer: unsafe cooperation

e
e~

Most methods are model-sensitive and have limited
autonomy in complex dynamic environment

@ 8 lé‘{' T L VI
Unknown model Dynamic env.

Source from: https://www.guancha.cn/society/2018 05 02 455570.shtml; https://blog.csdn.net/FEISILAB 2022/article/details/130678377; https://bigsuperzzzx.github.io/

-> Both layers: low autonomy




1.7 Solution

16

Model-based cooperative control

F.=W+wqg—-vr)m

A

F,=(+ur—wp)m

F.=(W+vp—up)m

& = vcost
y = vsinf
0 — %tané

« Safety-critical applications
* Known or partially known model
« (Good theoretical guarantee

From model-based to Al-empowered cooperative control

Al-empowered cooperative control
®e e o o

R S e S SN Neural
— @ KK RHKK XK XX —
® e o o
L EXPERTSYSTEM |
M Samplei - A
' - A Expert
¢ system

'
Non-expert . ' Knowledge
User ' v  froman
| '
............................... Expert

« Partially known/unknown environment
« Complex environment
» Data-rich environment
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2.1 Model-Based Control under Cyber-Layer Constraints 18

(1) Distributed resilient consensus under limited bandwidth and DoS attacks

Technical +« Limited communication and local information hinder timely cooperation
Hurdles < DoS attacks disrupt links and threaten consensus resilience

Adaptive and Event-based Scheme Distributed Resilient Control Experimental Results
DOS attaCk : - * S Observation err_ors bymgthod in [19] Observation error_‘s by proposed method
/ Resi“ent dual 0‘ \ ’o\" & Distributed 5 3 | region S g 4, FEmorsinX irection | 8231 : rrors in X direction
c | Local adaptive Consensus _ cop;f:cs;;s : “2 s |
2| data observer reference | P < uevz
N S Collaborative error Input| £ o
< 1 N -10 10 20 30 40 50 0 10 20 30 4q0---" uGv1
\g\ Even‘t- Measurement Agent i ‘ tis tis | uovz
A error Out ut . . __ErorsinY direction Errors in Y direction
§\— triggered - SAmMplEr|—— . P Distributed convergence to each 5 £ o
strategy e agents’ secure regions : :
/ Gl , e | T i
< -fﬁ? T - Fast convergence without DoS: : NINN N NN
Limited A 4 n,v v .1 Voo LE'OAO 10 20 30 40 50 7 0 10 20 30 40 50
bandwidth Ajw + dijb;; < dj;8,,j € N, By >0 e / o
k *
a1 L _"_'_A_'_lf k€F; « Slow divergence with DoS: | q 9
t; ={tl > tkilp. 01 eT e > Ty, T VT v _ _ mprovea convergence spee
el > el 9 0 exe, > i) ni ((A")TP + PAY = B,P)n; <8y, B2 >0 almost twice under DoS attack

\ Dual adaptive laws

Enable resilient interaction under cyber-layer constraints

IEEE TSMCS, 2024, 54(8): 4876—4886; IEEE TCYB, 2024, 54(10): 6244-6255; Automatica, 2020, 122, 109223




2.1 Model-Based Control under Cyber-Layer Constraints s

(2) Distributed formation control for UAVs under DoS and FDI attacks

Technical ¢ Distributed architectures communicate under malicious network attacks
Hurdles < Attack detection and control switching for nonlinear system models

Distributed Control Framework Two Controller Designs
N Signal compensation B e DoS attacks case
controller for FDI attacks I 1 S
: Controll _ 1 2p-1 a
Residual detector —» S\?vriltiﬁilf; u, =-— ( 22_1 ) p Xi o lilei o Exi 1'7”11'(?_)_
N Historical data recall a ]
controller for DoS attacks - f=—= Ay Called data
—_ q—
f __‘_JA Hll x WZII(§ ) 7/11 i1 7/11011
FDI DoS e
/  FDI attacks case

U, =—ce, — &9, _ﬁKfﬁ Compensation data

o
o, qo,-=za,-,-(p,-—p,-)+dl-pi
'% < JjeN,
UAV systems ¢l - Z a; (hi _hf _E +FJ)
JEN;

I[EEE TITS under review Jul. 2025




2.1 Model-Based Control under Cyber-Layer Constraints 2

* Verifications — applied to build information security for UGVs and UAVs

Fire center

Collaborative target tracking and patrolling Formation control of micro-UAVs under
under communication constraints and DoS DoS and FDI attacks

P - Overcome  Chall.1 Cyber-Layer:
Efficient Interaction e y y -
iInsecure interaction  7ADELAIDE



2.2 Model-Based Control under Physical-Layer Constraints

21

(1) Safe heterogeneous formation control via exponential control barrier function (ECBF)

Technical - Heterogeneous agents with different-order and nonlinear dynamics
Hurdles < Non-cooperative dynamic obstacles causing unpredictable collisions

ECBF-based Formation control Safe heterogeneous control Experlmental R?f‘flht.fm ~
_______________ Trai [ Obsta %0 ‘ ‘ ‘ ' ' ' ' ':UM
7 lf Augmented system | =
I S T | [ Uncertain |! e g
I ' Internal “ o .
i I model Sif‘liety | hete;*l(l)sgene : £ . - . 4\0 ;
| E_*Irrorl Stabilizer| |compensator ilter | dynamics | 51 v ranc
| — — ——————— A=====" " | e, [ |
: | Safe formation regulator ~ , =& o
| 10 N\ & = - > Iy 0‘.
| I ’ 5 el )
| . Heterogenous nonlinear CPMAS S A} |
| Output | P B R s I Diff t ord _ P
| | regulation | ECBF | Safety input X f () + g () imerent oraer Achieved faster convergence W|th|n
T |formation control| yominal | Safety filter|| t 1 L__l___g_l__l_ & dynamlcs distributed safet :
| Vor consensus | input | ’ = L istributed safety region
| (r?) « | | Heterogenous vi=hi(x), i=12..,n - S UAV2
: _Bij hij rdij < dinhiHij I MAS $150T — Sg\ﬁ
| |  Internal model compensator 2 100, ———-dov
| Collision-free formation | ) PN R f S e Satety boundary
———————————————————— 7. =%.7.4+¥Y.8 & =v.—-C'qs=C/F o\
Communication networks Output l Ho 26 € =i i Mi l fl o . . ALY .
Local data 0 10 20 30 40 50 60 70 80 90 100

Empower safe cooperation for heterogeneous CPMAS in obstacle-rich environments
IEEE TASE, 2022, 19(4): 2788-2800; IEEE TCYB, 2024, 54(10): 62446255




2.2 Model-Based Control under Physical-Layer Constraints ,,

(2) Distributed fault-tolerant cooperative output regulation

Technical ¢ Traditional methods require agents to access full exosystem information — unrealistic
Hurdles ° Existing protocols cannot convergence within a desired time, especially under multi-faults

Fixed-Time Observer & Control Fault-Tolerant Control Strategy Experimental Results
| * Observer 1: Estimate the matrix S I . . [
4 I RNEVIERE S () = —cisign(mi (1) — cosigmi () . /. | resilience to
| SR | all 3 faults
* Observer 2: Estimate the state v(t) Y _
EfflClency Outage . f + Fixed-time
Fault 5(6) = SO (0) — KW | convergence
| | —cysign(KE;(t)) — cssig(K&; (1)) R T :'rt:igtiaarldless ©
Exosystem |+ [ xed-Time | Fixed-Time | = . aqantive Fault-Tolerant Controller ;== .« conditions
Observer 1 Observer 2 ) s O;W
() d3,(t) I vi(®) I* B"Po (1) Bk + Quicker
Multi-agent Adaptive ..i__:_ doi () | T (OP,B Nl vi(t) 1| +€(t) R e ggzz;vatlon
system *» Fault-Tolerant o T Highe,r
Controller ~d (OB P () =z 2D precision.
Guarantee that the multiagent networks can achieve - Ol ®OPBI+e(®) 7 | Morerobust
output regulation control despite the impact of faults Tolerant multi-faults 1 tmew

Enable fast and adaptive fault-tolerant control under multi-faults

IEEE TCNS, 2022, 9(2): 845-855; JFI, 2019, 356(12):6547-6570




2.3 Model-Based Control under Physical-Layer Constraints .,

* Verifications — applied to heterogeneous systems and omnidirectional rovers

Obstacle2

ee]
Obstaclel

UAV-UGV collaborative area scanning Omnidirectional rover formation for area
under non-cooperative obstacles searching under faults
: - Overcome hall.2 Physical-layer: )
Rellable COOperathn ——— C a ys &< aye THEL}:J!:T:RSHY

Unsafe cooperation JADELAIDE
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3. Al-Empowered Cooperative Control -

(1) Fuzzy control for MAS under hybrid cyber-attacks
Technical < Hybrid cyberattacks in both S-C and C-A channels are difficult to model
Hurdles < Hybrid cyberattacks complicate event-triggered control design

Hybrid Attack Model and control scheme Experimental Results

Wireless
Actuator —{ pSllie — Sensor
Resilient AETS-1 —7J

Vehicle yaw rate (radls

(radls)
o =] o o [=]
o T T
N %-
.

Time (s)

©
% r‘—Resilient AETS-2 Y 24 - v v —
— Controller |« Wirel % ;f & =2
q>,~ networks S
! };?Deceptinn attacks ,DDS attacks el Time (5)
-~ il = hods The oroposed AETS —
S-C channel oot dosion v e
_ ° ontrolier design ul(t) = TNFg:: SC 3l 29 17
y@ = {BOFOFA=bsO)O.L €L, L .
@; t E' 12 : DOS h ( (ts h)) b (t)CC ( tc h) Transmission ra te 36.3%, 56,35, 24.3%,
L, (Mt h) ) (be(OC fo(x (tgnh)) .
C-A channel . | = ® Accurate path tracking
(t) = b ()F (t) + (1 — be(D) )u (0),t € I, G ED| | H(@=bc®)CFx (t5h). t € Ly N QF, ® Good control performance,
- ) tel, .9 tel,, ® Improved network utilization
’ n )

IEEE TCYB, 2023, 53(4): 2600-2609; IEEE TFS, 2022, 30(9): 3940-3951 25



3. Al-Empowered Cooperative Control %

(2) Fixed-time neural network control under physical constraints

Technical < Simultaneous handling of multiple constraints complicates controller design
Hurdles -+ Existing methods cannot guarantee fixed-time performance

Dlstrlbuted control framework Fixed-time NN Control Experimental Results
"  Neural network approximation °'
(f;(x;) - fo(xo)+[g(x)l1)u +d,)
<Jr+30, | Unknown sign
1 m m -
- < (M (r 4 3) + 22| O, )
- Q 2 max mmin
3 E « Fixed-time control
@. oS5
- " ogo — e 2 — min H max 3 5
Negural || Fied Aonfineat o8 %E 5 d (2mmax Yo, UFIrosiEn(s) ) _,
N it bt mapp™9 1 L 2.0 k- BN E _ 2 g, S —

:%%— G [ e e g E IR TAETRONE P Fasthigh
N\ e —e, 2l o | I N M accurac
o - Ly =2 ) -¥signs,) | Deadzone LT converger¥ce

Distributed observer-based framework for 2 m_ | inverse :, M p
| L — _ |

physical constraints and unknown dynamics w

Enable distributed autonomous control in constrained environment

IEEE TCYB, 2021, 51(4): 1835-1848; IEEE TSMCA, 2021, 51(12):7903-7918




3. Al-Empowered Cooperative Control -

(3) Uncertainty estimation based on neural networks

Technical « Static parameters induce chattering
Hurdles -+ Saturated systems cause delay and oscillation

Fractional Sensitivity Parameters Experimental Results

[ R — |
ODRs' coordinates ﬁ

Opti-Track Localisation
(Flex 3 Cameras)

0 1073 1072 101 109 10!
(3in  lz: — 7| € 1071, +00)
’?'2'12 Il.l‘l' — TIH € [10(:“72, 10{:“71)

Error norm

Vector norm
=]
S
S

Control commands

| | Balance estimation
o K . accuracy and
Vi  lwi — || € [10%77, 107770 .
system stability

|
| |
| |
I |
| |
| |
| |
| |
| |
I |
| |
I |
| |
| |
: : I 5 Control Control PWM P Rotal ! 1 "
: : 3 4 otating I
» | 2oy Signal _/1 . Signal @ Signal Speed | ‘?'i.""-‘ %e 18.5 18
= e - Cqy — Ty R 1 e ¥ M . ' ' . .
\ Vi, ”'I'i - I?H € [05 10 ) : Vi A4988 Stepper Bipolar Stepper I % 2 4 & 8 10 12
) . ) Motor Driver . Time (Seconds)
|| Arduino WiFi MKR1000 Actuator Saturation Motor | N
| | T T T T — T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |

A

Displacement

Estimation Error

Neural-Based Observer x | T

o Actual model  %; = g;u; +w; [ i, :

- Fictitious system x; = g;u; — %; + W, ¢;(Y;) . s o B
 Adaptive law W; =y, (V)X — y,lIZIIW;  dwewe L e 3 0 e
Achieve a faster & more stable tuning process Less chattering Hiahe,

Higher prec_ision

Improve uncertainty estimation performance and accuracy
IEEE TNNLS, 2021, 34(8): 4286-4295; Nonlinear Dynamics, 2022, 108(4): 3693-3709




3. Al-Empowered Cooperative Control

Distributed policy learning for unknown

model and environment variations

Env changes

Safety penalty

28
(4) Distributed safe reinforcement learning and control optimization
Technical Unknown environment and model limit traditional methods
Hurdles -« Distributed systems hinder safe coordination and optimization
Distributed Deep RL Framework Safe Optimization Strategy Experimental Results
1 » Distributed control optimization e
uf = argn:L1n|ul {Ef|2 % e T
S.t. - EU < al + a] Yhhl]’ VJ E O/L ﬂ M :50000 “'m 260 Es?'s%des 460 560 660
—hie S VRS Yk € 0.\ M T o
CPMAS under unknown environment and model information Avoiding UGV1 dObi'z e
b input | Rewards « Reward function for DDRL M\S/ A o
Cyi)er Phy;,lcal Distributed deep reinforcement learning - = 1| 2 oer . o!lz \ . 1—
oyersefe 1l w07 ‘z,.wm'hw ~hy = \ AU@;\/
| comstramts Local data ~ Improve
Communication networks |« "--| i Uov2 \Ob'l/’ \‘ afety &
Local data Outputs —Ekemw ik 71 fgﬁ - ' % | | ' learning

X/m

: rate

IEEE TNNLS, 2025, 36(2): 2777-2788; IEEE TSMCS, 2024, 54(8):4876-4886



3. Al-Empowered Approaches %

(5) Fuzzy-based control for human-machine collaboration

Technical - Hierarchical fuzzy control integrates human intention estimation and multi-task coordination
Hurdles °* Unmeasurable intention, task interference, and uncertain robot dynamics

FLS-based Multitask Control Framework Fuzzy_Based Control Strategy Experimental Results
e Quter-loop: e Quter-loop: Human Intention Estimation T,
i : —0.
Human : . Human ! s
; ~—D Kne = F | ) T
Perception nETIETI Dynamics | xRaXha ki dR] = Wihagcqop + €a -
Human-robot , E
interaction force : =
4 Current Pose . Human Intent f ° |nner-|00p: TaSk-SpaCG Mapplng % 10 f{g] 30 40
Stack " Estimation | . .
of Tasks \Estimated human : Xj = ] I(Q)q Effective trajectory tracking
| desired motionl Inner-loop : ! K
Subtask 1 i e e i e et tctenn e g ) £ ‘ ' " mAFLS
Reference |+ | R T Robot | 9.¢i * Inner-loop: Adaptive Fuzzy Control Law 2 00s) mPID |
Subtask 2 trajectory of subtasks : " Controller Dynamics i AT %D
Subtisk 3 I I FCtT'l = er + leuh'qj + KT'Sgn(r) + F‘U E 0 Level 1 Level 2 Level 3

(g}

Actual trajectory Kinematics S _ ‘ ‘ o

! ! of all tasks & Jacobian it mHIE

Ry FYEES FELTEPECEFLERFRTCRFBERIFERIFEL o ooy acuca cORPRERED ° I nner- I 00 p F L S W e | g h t -I-u n | n g 1F |
0

An outer loop estimates human intent with fuzzy logic, while an Vg = Bui(hy 1 — STl Foree [N Power [10™- W]
inner loop uses adaptive fuzzy control and null-space projection l l l l l Prevail over the PID controller
for prioritized multitask execution. on multitask tracking
Enable adaptive human-robot collaboration with unified intention estimation and multi-task control

IEEE TFS, 2024, 32(10): 58025814



3. Al-Empowered Approaches -

* Verifications — applied to drone swarms and multi-robot systems

.........

-1 0.5 0 0.5 | 1.5
X (m)

Done swarm passing through a bounded Formation control in the networked multi-
window robot system

Overcome Chall.3 Both layers:

AUtonOmOus OptimizatiOn ) IOW autonomy I;KISEIIYRRISSE
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4 What’s next ? 32

(1) Brain-inspired human-cyber-physical collaborative intelligence

| Iﬁulﬂll\lmlmﬂunuulnmmm

Brain-ingpired
nayigationin
ariec

Head direction cells . = s i) . ) A .. D)
. e WARFARE

Human-cyber-physical

- W
COIlaborat|Ve Combat THE UNIVERSITY
Source from: https://spj.science.org/doi/10.34133/cbsystems.0128 of ADELAIDE

Brain-inspired navigation



4 What’s next ?

33

(2) Multimodal embodied perception and co-decision among agents

fmrJ

Al agents
Can be robots, virtual assistants,
or other intelligent systems

a

C‘HéQiO

Perceptual inputs

Equipped with sensors that import
data from their surroundings,
along with Al systems that can
analyze and ‘learn’ from data

1{/ ~\
>

Interactive learning

The Al-powered agents learn from
interacting with the environment
until it reaches it goal

Source from: https://www.qualcomm.com/news/onq/2023/09/embodied-ai-how-do-ai-powered-robots-perceive-the-world

Embodied Al

Embodied Al

World model

Develop an abstract
representation and
understanding of the
spatial or temporal
dimensions of our world

Goal

Create agents that can
learn to solve complex tasks,
such as motion planning and
navigation, by interacting
with their environment

i
Large language models enabled

space exploration

THE UNIVERSITY

o ADELAIDE
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4 What’s next ? 2

(3) Explainable and trustworthy autonomy architecture

-

I

, .
i
\ L9

——
4
y

]
-

& v‘:\ 4

Companion robots for emotional support Trust intelligent healthcare systems
=),
THE UNIVERSITY
Source from: https://www.forbes.com/sites/williamhaseltine/2023/10/06/the-needles-edge-autonomous-robotic-surgery-and-its-implications-for-medicine/ o ADELAIDE



4 What’s next ?

35

4.4 Large-scale heterogenous CPMAS control and cross-field applications

Large-scale CPMAS in smart cities

Satellites

'

]

;

\J Smart grids
[Search and rescue O -~ &

Intelligent Robotics  DELIVERYSERVICE ,. S& % .
|\ Genemor

transportation systems
' Wind Turbines Energy Storage
\‘ f@ Utility

Solar Photovoltaics CSI

Applications of intelligent . Controls

Transportation s .o . cyber-physic a_bl Complex Networks
Loa

multiagent systems

==
—~

Eﬁ% Others
Self-driving vehicles eoe®

. ,))

Internet of Things

Cross-field application

THE UNIVERSITY
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